INTRODUCTION TO PYTHON PROGRAMMING

Course Code	19CS2801A	Year	IV	Semester	II
Course Category	Inter Disciplinary Elective -III	Branch EEE		Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1	Understand the basic constructs of Python Programming.	L2		
CO ₂	Apply Python Programming constructs to solve problems and make an effective	L3		
	report.			
CO3	Apply python packages to write programs for a given application.	L3		
CO4	Analyze and choose appropriate data structure for solving problems	L4		

	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	O2
CO1	3													
CO2	3								3	3				
CO3	3													
CO4		3												

Course Content						
UNIT-	Introduction to Python Features of Python, Writing and Executing First Python Program, Literal Constants, Variables and Identifiers, Reserved Words, Data Types, Input Operation, Operators and Expressions, Operations on Strings, Type Conversion, Conditional statements and iterative statements.	CO1,CO2				
UNIT- 2	Functions in Python Functions: Introduction, Built-in Math Functions, User Defined Functions: Function Call, Variable Scope and Lifetime, The return statement, Lambda Functions, Recursive functions Packages in python.	CO1,CO2				
UNIT-	Strings and File Handling in Python Strings: Introduction, Built-in String Functions, Slice Operation, Comparing Strings, Iterating String, Regular Expressions. File Handling: open, close, read and write operations.	CO1, CO2				
UNIT- 4	Data Structures in Python Lists: Accessing values in lists, Nested Lists, Basic List Operations. Tuples: Creating Tuple, Accessing values in a tuple, Basic Tuple Operations.	CO1,CO4				

	Dictionaries: Creating and Accessing Dictionaries, Built-in				
	Dictionary functions, List Vs Tuple Vs Dictionary.				
	Packages:				
	Numpy Create, reshape, slicing, operations such as min, max,				
UNIT-	sum, search, sort, math functions etc.	CO1 CO2			
5	Pandas Read/write from csv, excel, json files, add/ drop	CO1,CO3			
	columns/rows, aggregations, applying functions				
	Matplotlib Visualizing data with different plots, use of subplots.				
T D					

Learning Resources

Text books

- 1. Python Programming using Problem Solving Approach, Reema Thareja, 2017, OXFORD University Press
- 2. Python for Data Analysis, Wes McKinney, 2012, O.Reilly.

References

- 1. Core Python Programming, R. Nageswara Rao, 2018, Dreamtech press.
- 2. Programming with python, T R Padmanabhan, 2017, Springer.

e-Resources and other Digital Material

- 1. http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf
- 2. https://zhanxw.com/blog/wp-content/uploads/2013/03/BeautifulCode_2.pdf